\(\int \frac {\sqrt {a d e+(c d^2+a e^2) x+c d e x^2}}{(d+e x)^{3/2}} \, dx\) [2032]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 39, antiderivative size = 128 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=\frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \sqrt {d+e x}}-\frac {2 \sqrt {c d^2-a e^2} \arctan \left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{3/2}} \]

[Out]

-2*arctan(e^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)^(1/2)/(e*x+d)^(1/2))*(-a*e^2+c*d^2)^(
1/2)/e^(3/2)+2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {678, 674, 211} \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=\frac {2 \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e \sqrt {d+e x}}-\frac {2 \sqrt {c d^2-a e^2} \arctan \left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{e^{3/2}} \]

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^(3/2),x]

[Out]

(2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e*Sqrt[d + e*x]) - (2*Sqrt[c*d^2 - a*e^2]*ArcTan[(Sqrt[e]*Sqr
t[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/e^(3/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 674

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \sqrt {d+e x}}-\frac {\left (2 c d^2 e-e \left (c d^2+a e^2\right )\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{e^2} \\ & = \frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \sqrt {d+e x}}-\left (2 \left (c d^2-a e^2\right )\right ) \text {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right ) \\ & = \frac {2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \sqrt {d+e x}}-\frac {2 \sqrt {c d^2-a e^2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.92 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=\frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {e} \sqrt {a e+c d x}-\sqrt {c d^2-a e^2} \arctan \left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )\right )}{e^{3/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(d + e*x)^(3/2),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[e]*Sqrt[a*e + c*d*x] - Sqrt[c*d^2 - a*e^2]*ArcTan[(Sqrt[e]*Sqrt[a*e +
 c*d*x])/Sqrt[c*d^2 - a*e^2]]))/(e^(3/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 2.78 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.20

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a \,e^{2}-\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) c \,d^{2}-\sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\right )}{\sqrt {e x +d}\, \sqrt {c d x +a e}\, e \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\) \(153\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2*((c*d*x+a*e)*(e*x+d))^(1/2)*(arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a*e^2-arctanh(e*(c*d*x+a*
e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*c*d^2-(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2))/(e*x+d)^(1/2)/(c*d*x+a*e)^(
1/2)/e/((a*e^2-c*d^2)*e)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 309, normalized size of antiderivative = 2.41 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=\left [\frac {{\left (e x + d\right )} \sqrt {-\frac {c d^{2} - a e^{2}}{e}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} - 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} e \sqrt {-\frac {c d^{2} - a e^{2}}{e}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{e^{2} x + d e}, \frac {2 \, {\left ({\left (e x + d\right )} \sqrt {\frac {c d^{2} - a e^{2}}{e}} \arctan \left (\frac {\sqrt {e x + d} \sqrt {\frac {c d^{2} - a e^{2}}{e}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}\right ) + \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}\right )}}{e^{2} x + d e}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

[((e*x + d)*sqrt(-(c*d^2 - a*e^2)/e)*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3 + 2*a*d*e^2 - 2*sqrt(c*d*e*x^2 + a*
d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*e*sqrt(-(c*d^2 - a*e^2)/e))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*sqrt(c*d*e*x
^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(e^2*x + d*e), 2*((e*x + d)*sqrt((c*d^2 - a*e^2)/e)*arctan(sqrt
(e*x + d)*sqrt((c*d^2 - a*e^2)/e)/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)) + sqrt(c*d*e*x^2 + a*d*e + (c*d
^2 + a*e^2)*x)*sqrt(e*x + d))/(e^2*x + d*e)]

Sympy [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=\int \frac {\sqrt {\left (d + e x\right ) \left (a e + c d x\right )}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/(e*x+d)**(3/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))/(d + e*x)**(3/2), x)

Maxima [F]

\[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=\int { \frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/(e*x + d)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 235 vs. \(2 (112) = 224\).

Time = 0.29 (sec) , antiderivative size = 235, normalized size of antiderivative = 1.84 \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=-\frac {2 \, {\left (\frac {{\left (c d^{2} - a e^{2}\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} - \frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}}}{e} - \frac {c d^{2} e \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) - a e^{3} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) - \sqrt {c d^{2} e - a e^{3}} \sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}} e}\right )} {\left | e \right |}}{e^{2}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

-2*((c*d^2 - a*e^2)*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3))/sqrt(c*d^2*e - a*e^3
) - sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)/e - (c*d^2*e*arctan(sqrt(-c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3))
- a*e^3*arctan(sqrt(-c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3)) - sqrt(c*d^2*e - a*e^3)*sqrt(-c*d^2*e + a*e^3))/(
sqrt(c*d^2*e - a*e^3)*e))*abs(e)/e^2

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx=\int \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}}{{\left (d+e\,x\right )}^{3/2}} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(d + e*x)^(3/2),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)/(d + e*x)^(3/2), x)